# Average Widths of Sobolev Classes on $\mathbb{R}^{n}$ 

G. G. Magaril-Il'Yaev*<br>Moscow Institute of Radio Engineering, Electronics and Automatic, Moscow; Russia<br>Communicated by Allan Pinkus<br>Received February 21, 1992; revised July 23, 1992


#### Abstract

In this paper, we introduce the concept of $\varphi$-average dimension for some subspaces of $L_{p}\left(\mathbb{R}^{n}\right)$ and define the corresponding Kolmogorov $\varphi$-average $v$-width of a set in $L_{\boldsymbol{p}}\left(\mathbb{R}^{n}\right)$. For the Sobolev class $W_{p}^{r}\left(\mathbb{R}^{n}\right)$ in $L_{q}\left(\mathbb{R}^{n}\right)$ we find necessary and sufficient conditions for this quantity to be finite and determine its asymptotic behaviour as $v \rightarrow \infty$. We also obtain the exact value of the average $v$-widths of some classes of functions in $L_{2}\left(\mathbb{R}^{n}\right)$. i' 1994 Academic Press. Inc.


## 1. Definitions and Formulation of the Main Results

1.1. Let $(X,\|\cdot\|)$ be a normed linear space. We use the following notation:
$B X:=\{x \in X \mid\|x\| \leqslant 1\}$ is the unit ball in $X$,
$\operatorname{Lin}(X)$ is the set of all linear subspaces of $X$.
$d(x, A, X):=\inf \{\|x-y\| \mid y \in A\}$ is the distance of $x \in X$ from $A \subset X$,
$d(C, A, X):=\sup \{d(x, A, X) \mid x \in C\}$ is the deviation of $C \subset X$ from $A \subset X$,
$d_{n}(C, X):=\inf \{d(C, L, X) \mid L \in \operatorname{Lin}(X), \operatorname{dim} L \leqslant n\}$ is the Kolmogorov $n$-width of $C$ in $X\left(n \in \mathbb{Z}_{+}:=\{0,1,2, \ldots\}\right)$.
1.2. Let $n \in \mathbb{N}:=\{1,2, \ldots\}, p:=\left(p_{1}, \ldots, p_{n}\right), 1 \leqslant p_{i} \leqslant \infty, i=1, \ldots, n$, $I=(a, b),-\infty \leqslant a<b \leqslant \infty, I^{n}=I \times \cdots \times I$, and $L_{p}\left(I^{n}\right)$ denote the Banach space of measurable functions $x(\cdot)$ on $I^{n}$ with the mixed norm

$$
\|x(\cdot)\|_{L_{p}\left(I^{n}\right)}:=\left(\int_{I} d t_{n}\left(\int_{I} d t_{n}, 1 \cdots\left(\int_{I}|x(t)|^{p_{1}} d t_{1}\right)^{p_{2} \cdot p_{1}} \cdots\right)^{p_{n} / p_{n-1}}\right)^{1 / p_{n}}
$$

(see [1]).
When $\mathrm{p}=(p, \ldots, p), L_{p}\left(I^{n}\right)$ coincides with the usual space $L_{p}\left(I^{n}\right)$.
For ease of writing, we denote $\mathfrak{1}=(1, \ldots, 1), 2=(2, \ldots, 2), \infty=(\infty, \ldots, \infty)$.

* Supported by Russian Foundation of Fundamental Research.

If $\mathbb{p}=\left(p_{1}, \ldots, p_{n}\right), q=\left(q_{1}, \ldots, q_{n}\right), 1 \leqslant p_{i}, q_{i} \leqslant \infty, i=1, \ldots, n$, then $\mathbb{p} \leqslant q$ ( $p<q$ ) means $p_{i} \leqslant q_{i}\left(p_{i}<q_{i}\right), i=1, \ldots, n$.

Let $a>0$, and $P_{a}$ be the continuous linear operator in $L_{p}\left(\mathbb{R}^{n}\right)$ defined by $P_{a} x(\cdot):=X_{a}(\cdot) x(\cdot)$, where $X_{a}(\cdot)$ is the characteristic function of the cube $[-a, a]^{n}$.

Set

$$
\begin{aligned}
\operatorname{Lin}_{\mathrm{c}}\left(L_{\mathrm{p}}\left(\mathbb{R}^{n}\right)\right):= & \left\{L \in \operatorname { L i n } \left(L_{\mathrm{p}}\left(\mathbb{R}^{n}\right) \mid \text { restriction } P_{a} \text { to } L\right.\right. \text { is } \\
& \text { a compact operator for all } a>0\} .
\end{aligned}
$$

Let $L \in \operatorname{Lin}_{\mathrm{c}}\left(L_{\mathrm{p}}\left(\mathbb{R}^{n}\right)\right)$ and $a>0$. Then $P_{u}\left(L \cap B L_{\mathrm{p}}\left(\mathbb{R}^{n}\right)\right)$ is relatively compact and therefore the quantity

$$
\begin{aligned}
& K_{\varepsilon}\left(a, L, L_{\mathbb{p}}\left(\mathbb{R}^{n}\right)\right) \\
& \quad:=\min \left\{n \in \mathbb{Z}_{+} \mid d_{n}\left(P_{a}\left(L \cap B L_{\mathbf{p}}\left(\mathbb{R}^{\prime \prime}\right)\right), L_{\mathfrak{p}}\left(\mathbb{R}^{n}\right)\right)<\varepsilon\right\}
\end{aligned}
$$

is finite for every $a>0$ and $\varepsilon>0$.
It is easily verified that the function $a \rightarrow K_{\varepsilon}\left(a, L, L_{\mathbf{p}}\left(\mathbb{R}^{n}\right)\right)$ is nondecreasing and the function $\varepsilon \rightarrow K_{t}\left(a, L, L_{\mathbb{p}}\left(\mathbb{R}^{n}\right)\right)$ is nonincreasing.

Remark. Obviously we can identify $P_{a}\left(L \cap B L_{\mathbf{w}}\left(\mathbb{R}^{n}\right)\right)$ with the restriction $L \cap B L_{\mathbb{p}}\left(\mathbb{R}^{n}\right)$ to $[-a, a]^{n}$. It is then easy to check that

$$
\begin{aligned}
& K_{c}\left(a, L, L_{\mathrm{p}}\left(\mathbb{R}^{n}\right)\right) \\
& \quad=\min \left\{n \in \mathbb{Z}_{+} \mid d_{n}\left(P_{a}\left(L \cap B L_{p}\left(\mathbb{R}^{n}\right)\right), L_{\mathrm{p}}\left([-a, a]^{n}\right)\right)<\varepsilon\right\} .
\end{aligned}
$$

Let $\Phi$ denote the set of all positive nondecreasing functions $\varphi(\cdot)$ on $(0, \infty)$ for which $\varphi(a) \rightarrow \infty$ as $a \rightarrow \infty$.

Definition 1.1. Let $L \in \operatorname{Lin}_{\mathrm{c}}\left(L_{\mathrm{p}}\left(\mathbb{R}^{n}\right)\right)$ and $\varphi(\cdot) \in \Phi$. Then the $\varphi$-average dimension of $L$ in $L_{p}\left(\mathbb{R}^{n}\right)$ is defined as

$$
\begin{equation*}
\operatorname{dim}\left(L, L_{\mathrm{p}}\left(\mathbb{R}^{n}\right), \varphi(\cdot)\right):=\lim _{\theta \rightarrow 0} \liminf _{\Delta \rightarrow \infty} \frac{K_{t}\left(a, L, L_{\mathrm{p}}\left(\mathbb{R}^{n}\right)\right)}{\varphi(a)} \tag{1.1}
\end{equation*}
$$

If $\varphi(a)=(2 a)^{n}$ (the volume of cube $\left.[-a, a]^{n}\right)$ then we call (1.1) the average dimension of $L$ in $L_{p}\left(\mathbb{R}^{n}\right)$ and denote it by $\operatorname{dim}\left(L, L_{p}\left(\mathbb{R}^{n}\right)\right)$. In this case (1.1) is a slight modification of the definition given by Tikhomirov [10].

Definition 1.2. Let $C$ be a centrally symmetric subset of $L_{\mathbb{p}}\left(\mathbb{R}^{n}\right)$, $\varphi(\cdot) \in \Phi$, and $v \geqslant 0$. The Kolmogorov $\varphi$-average $v$-width of $C$ in $L_{\mathbb{p}}\left(\mathbb{R}^{n}\right)$ is defined as

$$
\begin{equation*}
d_{v}\left(C, L_{p}\left(\mathbb{R}^{n}\right), \varphi(\cdot)\right):=\inf _{L} \sup _{x(\cdot) \in C} \inf _{y(\cdot) \in L}\|x(\cdot)-y(\cdot)\|_{\left.L_{p} \mathbb{R}^{n}\right)} \tag{1.2}
\end{equation*}
$$

where the infimum is taken over all subspaces $L \in \operatorname{Lin}_{c}\left(L_{p}\left(\mathbb{R}^{n}\right)\right)$ such that $\operatorname{dim}\left(L, L_{\mathrm{p}}\left(\mathbb{R}^{n}\right), \varphi(\cdot)\right) \leqslant \nu$.

If $\varphi(a)=(2 a)^{n}$, then we call (1.2) the Kolmogorov average $v$-width of $C$ in $L_{\mathbf{p}}\left(\mathbb{R}^{n}\right)$ and denote it by $\bar{d}_{v}\left(C, L_{p}\left(\mathbb{R}^{n}\right)\right)$.
1.3. Let $S=S\left(\mathbb{R}^{n}\right)$ be the space of rapidly decreasing functions on $\mathbb{R}^{n}$, and $S^{\prime}=S^{\prime}\left(\mathbb{R}^{n}\right)$ the dual space of tempered distributions with the usual topologies. Denote by $F: S^{\prime} \rightarrow S^{\prime}$ and $F^{-1}: S^{\prime} \rightarrow S^{\prime}$ the Fourier transform and its inverse, respectively.

For each $\alpha \in \mathbb{R}, \mathscr{K}_{\alpha}: S^{\prime} \rightarrow S^{\prime}$ denotes the operator defined by $\mathscr{K}_{\alpha} x:=$ $\left(1+|\sigma|^{2}\right)^{\alpha / 2} x$, where $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right), \quad|\sigma|^{2}=\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}$. Let $I_{z}:=$ $F^{-1} \circ \mathscr{K}_{\alpha} \circ F$ and $\mathbb{1} \leqslant \mu \leqslant \infty$. Set

$$
\mathscr{H}_{\mathbb{p}}^{x}\left(\mathbb{R}^{n}\right):=\left\{x \in S^{\prime}\left(\mathbb{R}^{n}\right) \mid\left(I_{x} x\right)(\cdot) \in L_{\mathbb{p}}\left(\mathbb{R}^{n}\right)\right\} .
$$

This is a Banach space with norm $\|x(\cdot)\|_{\mathscr{N}_{p}^{\alpha}\left(\mathbb{R}^{n}\right)}:=\left\|\left(I_{\alpha} x\right)(\cdot)\right\|_{L_{p}\left(\mathbb{R}^{n}\right)}$ [3].
If $\mathfrak{p}=(p, \ldots, p)$, then $\mathscr{H}_{p}^{\alpha}\left(\mathbb{R}^{n}\right)$ are the well-known spaces of Bessel potentials, or Liouville spaces (see, for example, $[8,9]$ ).

When $1<\mathbb{p}<\infty$ and $\alpha=r \in \mathbb{N}, \mathscr{H}_{p}^{\alpha}\left(\mathbb{R}^{n}\right)$ coincides with the Sobolev space

$$
\mathscr{W}_{p}^{\alpha}\left(\mathbb{R}^{n}\right):=\left\{x(\cdot) \in L_{p}\left(\mathbb{R}^{n}\right) \mid \partial^{r} x(\cdot) / \partial t_{j}^{r} \in L_{p}\left(\mathbb{R}^{n}\right), j=1, \ldots, n\right\}
$$

(see [3]).
The set

$$
W_{\mathbb{p}}^{r}\left(\mathbb{R}^{n}\right):=\left\{x(\cdot) \in \mathscr{W}_{p}^{\alpha}\left(\mathbb{R}^{n}\right) \mid \sum_{j=1}^{n}\left\|\hat{\partial}^{r} x(\cdot) / \partial t_{j}^{r}\right\|_{L_{p}\left(\mathbb{R}^{n}\right)} \leqslant 1\right\}
$$

we call the Sobolev class.
In the case where $n=1$, we have determined the asymptotic behaviour of $d_{v}\left(W_{p}^{r}(\mathbb{R}), L_{q}(\mathbb{R}), \varphi(\cdot)\right)$ (for some $p, q$ ) as $v$ grows, and we have also found the exact values of $\bar{d}_{v}\left(W_{p}^{\prime}(\mathbb{R}), L_{p}(\mathbb{R})\right)$ for all $1 \leqslant p \leqslant \infty$ (see [5-7]). In this paper, we are interested in the case where $n$ is an arbitrary positive integer.
1.4. The following assertions are the main results in this paper.

Theorem 1.1. Let $r, n \in \mathbb{N}, \quad \mathbb{1}<\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)=\mathbb{q}=\left(q_{1}, \ldots, q_{n}\right)<$ or $1<\mathfrak{p} \leqslant \mathbb{q} \leqslant 2$, if $p \neq q$. Next, let $r>\sum_{j=1}^{n}\left(1 / p_{j}-1 / q_{j}\right), \quad \varphi(\cdot) \in \Phi$, and $v>0$. Then $d_{v}\left(W_{p}^{r}\left(\mathbb{R}^{n}\right), \quad L_{q}\left(\mathbb{R}^{n}\right), \varphi(\cdot)\right)<\infty \quad$ if and only if $\lim \inf _{a \rightarrow \infty}\left(a^{n} / \varphi(a)\right)<\infty$.

If, in addition, $\lim \inf _{a \rightarrow \infty}\left(a^{n} / \varphi(a)\right)>0$, then

$$
d_{v}\left(W_{\mathbf{p}}^{r}\left(\mathbb{R}^{n}\right), L_{\mathbf{q}}\left(\mathbb{R}^{n}\right), \varphi(\cdot)\right) \asymp \begin{cases}v^{-r / n}, & \mathbb{p}=\mathbb{q} \\ v^{-(1 / n)\left(r-\sum_{j=1}^{n}\left(1 / p_{j}-1 / q\right)\right.}, & \mathbb{1}<\mathbb{p} \leqslant \mathbb{q} \leqslant 2 .\end{cases}
$$

Theorem 1.2. Let $n \in \mathbb{N}, \alpha>0$, and $v \geqslant 0$. Then

$$
\bar{d}_{v}\left(B \mathscr{H}_{2}^{x}\left(\mathbb{R}^{n}\right), L_{2}\left(\mathbb{R}^{n}\right)\right)=\left(1+4 \pi\left(\Gamma\left(\frac{n}{2}+1\right) v\right)^{2 / n}\right)^{-\alpha / 2}
$$

where $\Gamma(\cdot)$ is the Euler function (and, recall, that $B \mathscr{H}_{2}^{\alpha}\left(\mathbb{R}^{n}\right)$ is the unit ball in $\mathscr{H}_{2}^{x}\left(\mathbb{R}^{n}\right)$ ).

## 2. Preliminary Results

Let $n \in \mathbb{N}, \quad \sigma=\left(\sigma_{1}, \ldots \sigma_{n}\right) \geqslant \mathbb{D}, \mathbb{1} \leqslant \mathbb{P} \leqslant \mathbb{D}$, and $\mathscr{B}_{\sigma, p}\left(\mathbb{P}^{n}\right)$ denote the restriction to $\mathbb{R}^{n}$ of the space of all functions of exponential type $\sigma$ which belong to $L_{p}\left(\mathbb{R}^{n}\right)$ (see [8]).

Lemma 2.1. Let $1 \leqslant \mathbb{P} \leqslant \infty$ and $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)>\mathbb{0}$. Then $\mathcal{B}_{\sigma, p}\left(\mathbb{R}^{n}\right) \in$ $\operatorname{Lin}_{c}\left(\mathbb{R}^{n}\right)$ and

$$
\overline{\operatorname{dim}}\left(\mathscr{B}_{\sigma, p}\left(\mathbb{R}^{n}\right), L_{p}\left(\mathbb{R}^{n}\right)\right) \leqslant \frac{\sigma_{1} \cdot \cdots \cdot \sigma_{n}}{\pi^{n}}
$$

The case for $p=(p, \ldots, p)$ follows from [2]. The argument in the general case is similar.

Lemma 2.2. Let $1<\mathbb{p}=\left(p_{2}, \ldots, p_{n}\right) \leqslant \mathbb{q}=\left(q_{1}, \ldots, q_{n}\right)<\infty, \quad r \in \mathbb{N}, \quad r>$ $\sum_{i=1}^{n}\left(1 / p_{i}-1 / q_{i}\right), \gamma>0$, and $\sigma=\left(\gamma^{1 / n}, \ldots, \gamma^{1 / n}\right)$. Then there exists a constant $c>0$ depending only $\mathfrak{p}, \mathfrak{q}$, and $r$ so that

$$
\left.d\left(W_{\mathrm{p}}^{\mathrm{r}}\left(\mathbb{R}^{n}\right), \mathscr{B}_{\sigma, \mathrm{q}}\left(\mathbb{R}^{n}\right), L_{\mathrm{q}}\left(\mathbb{R}^{n}\right)\right) \leqslant c \gamma^{-(1 / n)(r} \quad \sum_{i=1}^{n}\left(1 / p_{j}-1 / q,\right)\right) .
$$

This is a consequence of the general result [4].
Let $\mathscr{I}$ be a finite set, $n \in \mathbb{N}, \mathscr{I}^{n}=\mathscr{I} \times \cdots \times \mathscr{F}, N=\operatorname{card} \mathscr{I}^{n}$, and $1 \leqslant \mathbb{p}=\left(p_{1}, \ldots, p_{n}\right) \leqslant \infty$. Denote by $l_{p}^{N}\left(\mathscr{F}^{n}\right)$ the normed linear space of functions $a_{j_{1} \ldots j_{n}}, j_{k} \in \mathscr{I}, 1 \leqslant k \leqslant n$, on $\mathscr{F}^{n}$ with the mixed norm

$$
\left\|a_{j_{1}, \ldots, j_{n}}\right\|_{p_{p}^{v_{1}}\left(g^{n}\right)}:=\left(\sum_{j_{n}}\left(\sum_{j_{n} 1} \cdots\left(\sum_{j_{1}}\left|a_{j_{1}, \ldots j_{n}}\right|^{p_{1}}\right)^{p_{2} / p_{1}} \cdots\right)^{p_{n} / p_{n}}\right)^{1 / p_{n}} .
$$

Lemma 2.3. Let $k, n \in \mathbb{N}, \mathscr{I}$ be a finite set, card $\mathscr{I}^{n}=: N>k$, $1 \leqslant p \leqslant q \leqslant \mathcal{R}$, and $B l_{p}^{N}\left(\mathscr{I}^{n}\right)$ the unit ball in $l_{p}^{N}\left(\mathscr{F}^{n}\right)$. Then

$$
d_{k}\left(B l_{\mathfrak{p}}^{N}\left(\mathscr{F}^{\prime \prime}\right), l_{\mathfrak{q}}^{N}\left(\mathscr{S}^{\prime}\right)\right) \geqslant \sqrt{1-\frac{k}{N}} .
$$

Proof. The inequality
holds true for all $a_{j, \ldots, j_{n}} \in l_{\mathbb{p}}^{N}\left(\mathscr{I}^{n}\right)$.
Indeed, if $n=1$, then the assertion is true (see [12]). The general case is proved by an obvious inductive argument.

By (2.1) and definition of the Kolmogorov $k$-width and since $1 \leqslant p \leqslant q \leqslant 2$, we obtain

$$
d_{k}\left(B l_{\mathrm{p}}^{N}\left(\mathscr{I}^{n}\right), l_{\mathrm{q}}^{N}\left(\mathscr{I}^{n}\right)\right) \geqslant d_{k}\left(B l_{1}^{N}\left(\mathscr{I}^{n}\right), l_{\mathbb{Z}}^{N}\left(\mathscr{F}^{n}\right)\right)
$$

$l_{\mathfrak{p}}^{N}\left(\mathscr{I}^{n}\right)$ in the special case $\mathbb{p}=(p, \ldots, p)$ we can identify with $l_{p}\left(\mathbb{R}^{N}\right)$. It is the normed space of vectors $\xi=\left(\xi_{1}, \ldots, \xi_{N}\right) \in \mathbb{R}^{N}$ with norm $\|\xi\|_{l_{p}\left(H^{N}\right)}:=$ $\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{1 / p}$. Thus,

$$
d_{k}\left(B l_{1}^{N}\left(\mathscr{I}^{n}\right), l_{2}^{N}\left(\mathscr{I}^{n}\right)\right)=d_{k}\left(B l_{1}\left(\mathbb{R}^{N}\right), l_{2}\left(\mathbb{R}^{N}\right)\right)=\sqrt{1-\frac{k}{N}}
$$

where the last equality is a well-known result (see, for example, [11]). Lemma 2.3 is proved.

Let $\psi(\cdot) \in C^{\infty}(\mathbb{R})$, supp $\psi(\cdot) \subset[0,1], \psi(t) \geqslant 0, \int_{0}^{1} \psi(t) d t=1$, and $h>0$. Put $\psi_{j, h}(t)=\psi(t / h-j), j \in \mathbb{Z}$. Then supp $\psi_{j, h}(\cdot) \subset \boldsymbol{A}_{j, h}:=[j h,(j+1) h]$.

Let $n \in \mathbb{N}$. We associate with any $\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}^{n}$ and $h>0$ the following function on $\mathbb{R}^{n}$ :

$$
\Psi_{j_{1} \ldots j_{n}, h}\left(t_{1}, \ldots, t_{n}\right):=\prod_{k=1}^{n} \psi_{j_{k}, h}\left(t_{k}\right)
$$

It is obvious that $\Psi_{j_{1} \cdots j_{n}, h}(\cdot) \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\operatorname{supp} \Psi_{j_{1} \cdots j_{n}, h}(\cdot) \subset A_{j_{1} \ldots j_{n}, h}:=$ $\Delta_{j_{1}, h} \times \cdots \times \Delta_{j_{n}, h}$.

For any $n, m \in \mathbb{N}, h>0$ define the space $L_{m, h}(n)$ by

$$
L_{m, h}(n):=\operatorname{span}\left\{\Psi_{j_{1} \ldots j_{n}, h}(\cdot) \mid j_{1}, \ldots, j_{n}=-m, \ldots, m-1\right\}
$$

It is easy to see that $\operatorname{dim} L_{m, h}(n)=(2 m)^{n}$, and $\operatorname{supp} x(\cdot) \subset[-m h, m h]^{n}$ when $x(\cdot) \in L_{m, h}(n)$.

For $x(\cdot) \in L_{1}\left([-m h, m h]^{n}\right)$ put

$$
\begin{equation*}
P_{m, n, h} x(\cdot):=h^{-n} \sum_{j_{1} \ldots, j_{n}=-m}^{m-1}\left(\int_{\Delta j_{1} \ldots j_{n}, h} x(\tau) d \tau\right) \Psi_{j_{1} \ldots j_{n}, h}(\cdot) \tag{2.2}
\end{equation*}
$$

Lemma 2.4. Let $m, n \in \mathbb{N}$ and $h>0$.
(1) If $\mathbb{1} \leqslant \mathbb{p}=\left(p_{1}, \ldots, p_{n}\right) \leqslant \infty$, then $P_{m, n, h}$ is a continuous linear projection in $L_{p}\left([-m h, m h]^{n}\right)$, and there exists a constant $c>0$ depending only on $p$ such that $\left\|P_{m, n, h}\right\| \leqslant c$.
(2) If $\mathbb{1} \leqslant \mathbb{p}=\left(p_{1}, \ldots, p_{n}\right) \leqslant \infty, k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}, \mathscr{I}_{m}=\{-m, \ldots$, $m-1\}, N=(2 m)^{n}$, and $x(\cdot)=\sum_{j_{1} \ldots, j_{n}=-m}^{m-1} a_{j_{1} \ldots j_{n}} \Psi_{j_{1} \ldots j_{n}, h}(\cdot) \in L_{m, h}(n)$, then there exists a constant $c>0$ depending only on p and $k$ such that

$$
\begin{equation*}
\left\|\partial^{k_{1}+\cdots+k_{n}} x(\cdot) / \partial t_{1}^{k_{1}} \cdots \partial t_{n}^{k_{n}}\right\|_{L_{\mathbf{p}}\left([-m h, m h]^{n}\right)}=c h^{-|k|+\sum_{j-1}^{n}\left(1 / p p_{1}\right)}\left\|a_{j_{1} \ldots j_{n}}\right\|_{L_{\mathbf{p}}^{N\left(\mathcal{S}_{m}^{n},\right.}} \tag{2.3}
\end{equation*}
$$

where $|k|=k_{1}+\cdots+k_{n}$.
(3) If $\mathbb{1} \leqslant \mathbb{p}=\left(p_{1}, \ldots, p_{n}\right) \leqslant \mathbb{q}=\left(q_{1}, \ldots, q_{n}\right) \leqslant \infty$ and $k=\left(k_{1}, \ldots, k_{n}\right) \in$ $\mathbb{Z}_{+}^{n}$, then there exists a constant $c>0$ depending only on $\mathbb{p}$, $\mathbb{\square}$, and $k$ such that the inequality

$$
\begin{align*}
& \left\|\partial^{k_{1}+\cdots+k_{n}} x(\cdot) / \partial t_{1}^{k_{1}} \cdots \partial t_{n}^{k_{n}}\right\|_{L_{q}\left([-m h, m h]^{n}\right)} \\
& \leqslant c h^{-|k|+\sum_{j=1}^{n}\left(1 / q_{j}-1 / p_{j}\right)}\|x(\cdot)\|_{L_{\mathrm{P}}\left([-m h, m h]^{n}\right)} \tag{2.4}
\end{align*}
$$

holds true for all $x(\cdot) \in L_{m, h}(n)$.
The assertions of Lemma 2.4 are directly verified for $n=1$. The general case is proved by an inductive argument. We omit the corresponding routine calculations.

## 3. Proofs of the Main Results

3.1. Proof of Theorem 1.1. Necessity. Let $d_{v}\left(W_{\mathbf{p}}^{\prime}\left(\mathbb{R}^{n}\right), L_{\mathbf{q}}\left(\mathbb{R}^{n}\right)\right.$, $\varphi(\cdot))<\infty$. Then $d\left(W_{p}^{r}\left(\mathbb{R}^{n}\right), L, L_{\mathbf{q}}\left(\mathbb{R}^{n}\right)\right)<\infty$ for some $L \in \operatorname{Lin}_{c}\left(L_{\mathbf{q}}\left(\mathbb{R}^{n}\right)\right)$ such that $\operatorname{dim}\left(L, L_{q}\left(\mathbb{R}^{n}\right), \varphi(\cdot)\right) \leqslant v$.

Let $\varepsilon>0$. There is a sequence $\left\{a_{s}\right\}_{s \in \mathbb{N}}$ for which

$$
\liminf _{a \rightarrow \infty} \frac{K_{c}\left(a, L, L_{\mathbf{q}}\left(\mathbb{R}^{n}\right)\right)}{\varphi(a)}=\lim _{s \rightarrow \infty} \frac{K_{t}\left(a_{s}, L, L_{\mathrm{q}}\left(\mathbb{R}^{n}\right)\right)}{\varphi\left(a_{s}\right)}
$$

For each $s \in \mathbb{N}$ there exists an $M(s, \varepsilon) \in \operatorname{Lin}\left(L_{\mathrm{q}}\left(\left[-a_{s}, a_{s}\right]^{n}\right)\right.$ so that $\operatorname{dim} M(s, \varepsilon) \leqslant K_{\varepsilon}\left(a_{s}, L, L_{\mathrm{q}}\left(\mathbb{R}^{n}\right)\right)$ and

$$
\begin{equation*}
d\left(P_{a_{s}} y(\cdot), M(s, \varepsilon), L_{\mathbf{q}}\left(\left[-a_{s}, a_{s}\right]^{n}\right)\right)<\varepsilon\|y(\cdot)\|_{L_{q}\left(\mathbb{R}^{n}\right)} \tag{3.1}
\end{equation*}
$$

for all $y(\cdot) \in L$.
Set $m_{s}:=\left[\left(4 v \varphi\left(a_{s}\right)\right)^{1 / n} / 2\right], \quad h_{s}:=2 a_{s} /\left(4 v \varphi\left(a_{s}\right)\right)^{1 / n}$ and denote $L_{s}:=$ $L_{m_{s}, h_{s}}(n)$ (see Section 2). Since $m_{s} h_{s} \leqslant \alpha_{s}$, then $\sup x(\cdot) \subset\left[-a_{s}, a_{s}\right]^{n}$ for $x(\cdot) \in L_{s}$.

Let $c(k, \mathfrak{p})$ be a constant in (2.4) for $\mathfrak{p}=\mathbb{q}, c_{1}:=c_{1}(r, \mathbb{p}):=$ $n \max \{c(k, \mathbb{P})||k|=r\}, s \in \mathbb{N}$, and

$$
\begin{equation*}
x(\cdot) \in C_{1}^{-1} h_{s}^{r} L_{s} \cap B L_{\mathrm{p}}\left(\left[-a_{s}, a_{s}\right]^{n}\right) \tag{3.2}
\end{equation*}
$$

Then, by (2.4), $x(\cdot) \in W_{p}^{r}\left(\mathbb{R}^{n}\right)$ (we assume that $x(t)=0$ for $t$ outside the $\left[-a_{s}, a_{s}\right]^{n}$.

For each $y(\cdot) \in L$, we have $(M:=M(s, \varepsilon))$

$$
\begin{aligned}
&\|x(\cdot)-y(\cdot)\|_{L_{\mathbf{q}}\left(\mathbb{R}^{n}\right)} \geqslant\left.\left\|x(\cdot)-P_{a_{s}} y(\cdot)\right\|_{L_{\mathbf{q}}\left(\left[-a_{s}, a_{s}\right]\right.}\right) \\
& \geqslant d\left(x(\cdot), M, L_{\mathbf{q}}\left(\left[-a_{s}, a_{s}\right]^{n}\right)\right) \\
& \quad-d\left(P_{a_{s}} y(\cdot), M, L_{\mathbf{q}}\left(\left[-a_{s}, a_{s}\right]^{n}\right)\right) \\
& \stackrel{(3,1)}{\geqslant} d\left(x(\cdot), M, L_{\mathbf{q}}\left(\left[-a_{s}, a_{s}\right]^{n}\right)\right)-\varepsilon\|y(\cdot)\|_{L_{q}\left(\mathbb{R}^{n}\right)} \\
& \geqslant d\left(x(\cdot), M, L_{\mathrm{q}}\left(\left[-a_{s}, a_{s}\right]^{n}\right)-\varepsilon\|x(\cdot)\|_{L_{q}\left(\mathbb{R}^{n}\right)}\right. \\
&\quad-\varepsilon \| x \cdot)-y(\cdot) \|_{L_{\mathbf{q}}\left(\mathbb{R}^{n}\right)},
\end{aligned}
$$

i.e.,

$$
(1+\varepsilon)\|x(\cdot)-y(\cdot)\|_{L_{\mathbf{q}}\left(\mathbb{R}^{n}\right)} \geqslant d\left(x(\cdot), M, L_{\mathbf{q}}\left(\left[-a_{s}, a_{s}\right]^{n}\right)\right)-\varepsilon\|x(\cdot)\|_{L_{\mathbf{q}}\left(\mathbb{R}^{n}\right)} .
$$

It follows that

$$
\begin{align*}
& (1+\varepsilon) d\left(W_{\mathbf{p}}^{\prime}\left(\mathbb{R}^{n}\right), L, L_{\mathbf{q}}\left(\mathbb{R}^{n}\right)\right) \\
& \quad \geqslant d\left(x(\cdot), M, L_{\mathbf{q}}\left(\left[-a_{s}, a_{s}\right]^{n}\right)\right)-\varepsilon\|x(\cdot)\|_{L_{\mathbf{q}}\left(\mathbb{R}^{n}\right)} \tag{3.3}
\end{align*}
$$

By (2.4) for $k=0$ and (3.2), one has

$$
\begin{align*}
\|x(\cdot)\|_{L_{q}\left(\mathbb{R}^{n}\right)} & =\|x(\cdot)\|_{L_{q}\left[\left[-m_{s} h_{s} m_{5} h_{s}\right]^{n}\right)} \\
& \leqslant C_{2} h_{s}^{\sum_{j=1}^{n}\left(1 / q_{j}-1 / p_{i}\right)}\|x(\cdot)\|_{\left.L_{\mathrm{P}}\left(\mathrm{I}-a_{s}, a_{s}\right]^{n}\right)} \\
& \leqslant c_{3} h_{s}^{\sum_{j=1}^{n}\left(1 / q_{j}-1 / p_{i}\right)+r}, \tag{3.4}
\end{align*}
$$

where $c_{3}>0$ depends only $\mathfrak{p}, \boldsymbol{q}$, and $r$.
By taking the supremum over $x(\cdot)$ satisfying (3.2), and using (3.4), we deduce from (3.3) that

$$
\begin{align*}
(1+\varepsilon) & d\left(W_{\mathrm{p}}^{r}\left(\mathbb{R}^{n}\right), L, L_{\mathrm{q}}\left(\mathbb{R}^{n}\right)\right) \\
\geqslant & c_{1}^{-1} h_{s}^{r} d\left(L_{s} \cap B L_{\mathbf{p}}\left(\left[-a_{s}, a_{s}\right]^{n}\right), M, L_{\mathbf{q}}\left(\left[-a_{s}, a_{s}\right]^{n}\right)\right) \\
& \quad-\varepsilon c_{3} h_{s}^{r+\sum_{j=1}^{n}\left(1 / q_{j}-1 / p_{j}\right)} . \tag{3.5}
\end{align*}
$$

For sufficiently large $s, K_{\varepsilon}\left(a_{s}, L, L_{q}\left(\mathbb{R}^{n}\right)\right) \leqslant \frac{3}{2} v \varphi\left(a_{s}\right)$ and since $\frac{3}{2} v \varphi\left(a_{s}\right) /$ $\operatorname{dim} L_{s} \rightarrow \frac{3}{8}$, then there is an $s_{0}=s_{0}(\varepsilon) \in \mathbb{N}$ so that $\frac{3}{2} v \varphi\left(a_{s}\right) / \operatorname{dim} L_{s} \leqslant \frac{1}{2}$, $s \geqslant s_{0}$. Thus,

$$
\begin{equation*}
K_{\varepsilon}\left(a_{s}, L, L_{\mathbf{q}}\left(\mathbb{R}^{n}\right)\right) \leqslant \frac{1}{2} \operatorname{dim} L_{s} \tag{3.6}
\end{equation*}
$$

for all $s \geqslant s_{0}$.

Let $s \geqslant s_{0}$. Put $l_{s}:=2^{n \cdot 1}\left[\left(4 v \varphi\left(a_{s}\right)\right)^{1 / n} / 2\right]$. Then

$$
l_{s}=\frac{1}{2} \operatorname{dim} L_{s} \stackrel{(3.6)}{\geqslant} K_{i}\left(a_{s}, L, L_{q}\left(\mathbb{R}^{n}\right)\right) \geqslant \operatorname{dim} M(s, \varepsilon) .
$$

It follows from this and the first two assertions of Lemma 2.4 (by using the usual discretization technique) that

$$
\begin{align*}
& d\left(L_{s} \cap B L_{\mathbb{p}}\left(\left[-a_{s}, a_{s}\right]^{\prime \prime}\right), M(s, \varepsilon), L_{\mathbf{q}}\left(\left[-a_{s}, a_{s}\right]^{\prime \prime}\right)\right) \\
& \geqslant d_{i_{s}}\left(L_{s} \cap B L_{p}\left(\left[-a_{s}, a_{s}\right]^{\prime \prime}\right), L_{q}\left(\left[-a_{s}, a_{s}\right]^{n}\right)\right) \\
& \geqslant c_{4} d_{l s}\left(L_{s} \cap B L_{\mathrm{p}}\left(\left[-a_{s}, a_{s}\right]^{n}\right), L_{s} \cap L_{\mathrm{q}}\left(\left[-a_{s}, a_{s}\right]^{n}\right)\right) \\
& \geqslant c_{5} h_{s}^{\left.\sum_{s}^{n}, 11 / q_{1}-1 / p_{1}\right)} d_{l,}\left(B l_{\mathrm{p}}^{N_{s}}\left(\mathscr{Y}_{m_{1}}^{n}\right), l_{\mathrm{q}}^{N_{s}}\left(\mathscr{F}_{m_{s}}^{n}\right)\right), \tag{3.7}
\end{align*}
$$

where $\mathscr{I}_{m_{s}}=\left\{-m_{s}, \ldots, m_{s}-1\right\}, N_{s}=\left(2 m_{s}\right)^{\prime \prime}$.
From (3.5), (3.7), and Lemma 2.3, we get

$$
\begin{align*}
(1 & +\varepsilon) d\left(W_{p}^{r}\left(\mathbb{R}^{n}\right), L, L_{\mathrm{q}}\left(\mathbb{R}^{n}\right)\right) \\
& \left.\geqslant\left(c_{6}-\varepsilon c_{3}\right) h_{s}^{r+\sum_{j=1}^{n}\left(1 / q_{i}\right.} 1 / p_{i}\right) \\
& =c_{7}\left(c_{6}-\varepsilon c_{3}\right) v^{-(1 / n)\left(r-\sum_{j-1}^{n}\left(1 / p_{j}-1 / q_{j}\right) \prime\right.}\left(a_{s}^{n} / \varphi\left(a_{s}\right)\right)^{(1 / n)\left(r-\sum_{j-1}^{n}\left(1 / p_{j} \quad 1 / a_{j}\right)\right)} . \tag{3.8}
\end{align*}
$$

For sufficiently small $\varepsilon>0, c_{6}-\varepsilon c_{3}>0$. Since $r-\sum_{j=1}^{n}\left(1 / p_{j}-1 / q_{j}\right)>0$ and the left-hand side of (3.8) is finite, then $\lim _{\inf _{a \rightarrow \infty}}\left(a^{n} / \varphi(a)\right)<\infty$. The necessity is proved.

Sufficiency. Let $\lim \inf _{a \rightarrow x}\left(a^{\prime \prime} / \varphi(a)\right)=: b<\infty$. From the identity

$$
\frac{K_{s}\left(a, \mathscr{B}_{\sigma, q}\left(\mathbb{R}^{n}\right), L_{q}\left(\mathbb{R}^{n}\right)\right)}{\varphi(a)}=\frac{K_{i}\left(a, \mathscr{B}_{\sigma, q}\left(\mathbb{R}^{n}\right), L_{q}\left(\mathbb{R}^{n}\right)\right)}{(2 a)^{n}} \cdot \frac{(2 a)^{n}}{\varphi(a)}
$$

and Lemma 2.1 it follows that (for $\sigma=\left(\gamma^{1 / n}, \ldots, \gamma^{1 / n}\right)$ )

$$
\begin{equation*}
\operatorname{dim}\left(\mathscr{D}_{\sigma, 母}\left(\mathbb{R}^{n}\right), L_{q}\left(\mathbb{R}^{n}\right), \varphi(\cdot)\right) \leqslant \gamma 2^{n} b / \pi^{n} . \tag{3.9}
\end{equation*}
$$

Put $\gamma=v(\pi / 2)^{n} b^{-1}$ if $b>0$, and $\gamma=1$ if $b=0$. Then, by (3.9) and Lemma 2.2, we have

$$
d_{\mathrm{v}}\left(W_{\mathrm{p}}^{r}\left(\mathbb{R}^{n}\right), L_{\mathrm{q}}\left(\mathbb{R}^{n}\right), \varphi(\cdot)\right) \leqslant c_{1} v^{-(1 / n)\left(r-\sum_{j=1}^{n}\left(1 / p_{j}-1 / \psi_{j}\right)\right.},
$$

that is, $d_{v}\left(W_{p}^{r}\left(\mathbb{R}^{n}\right), L_{q}\left(\mathbb{R}^{n}\right), \varphi(\cdot)\right)<\infty$ and, in addition, the required upper bound is obtained.

Let $\lim \inf _{a \rightarrow \infty}\left(a^{\prime \prime} / \varphi(a)\right)>0$. Then the required lower bound follows from (3.8). Theorem 1.1 is proved.
3.2. Proof of Theorem 1.2. The upper bound. Let $\rho>0, \rho B \mathbb{R}^{n}:=$ $\left\{t=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n} \mid t_{1}^{2}+\cdots+t_{n}^{2} \leqslant \rho^{2}\right\}$ and $F$ be the Fourier transform in $L_{2}\left(\mathbb{R}^{n}\right)$. Denote by $\mathscr{G}_{\rho}\left(\mathbb{R}^{n}\right)$ the set of functions in $L_{2}\left(\mathbb{R}^{n}\right)$ whose Fourier transform is contained in $\rho B \mathbb{R}^{n}$. Then $\mathscr{G}_{\rho}\left(\mathbb{R}^{n}\right) \in \operatorname{Lin}_{c}\left(L_{2}\left(\mathbb{R}^{n}\right)\right)$ and

$$
\begin{equation*}
\overline{\operatorname{dim}}\left(\mathscr{G}_{\rho}\left(\mathbb{R}^{n}\right), L_{2}\left(\mathbb{R}^{n}\right)\right)=V_{n}(\rho) /(2 \pi)^{\prime \prime}, \tag{3.10}
\end{equation*}
$$

where $V_{n}(\rho):=\pi^{n / 2} \rho^{n} / \Gamma(n / 2+1)$ is the volume of $\rho B \mathbb{R}^{n}$.
This assertion follows from [2], where the more general formula was proved.

By $T_{\rho}$ denote the map in $L_{2}\left(\mathbb{R}^{n}\right)$ defined by $F T_{\rho} x(\cdot):=X_{\rho} F x(\cdot)$, where $X_{\rho}(\cdot)$ is the characteristic function of $\rho B \mathbb{R}^{n}$. It is not hard to check that $T_{\rho}$, is a continuous linear operator in $L_{2}\left(\mathbb{R}^{n}\right)$.

Let $x(\cdot) \in B \mathscr{H}_{2}^{x}\left(\mathbb{R}^{n}\right)$. By Plancherel's theorem and the definition of $\mathscr{H}_{2}^{x}\left(\mathbb{R}^{n}\right)$, one has

$$
\begin{align*}
\left\|x(\cdot)-T_{\rho} x(\cdot)\right\|_{L_{2}\left(R^{n}\right)}^{2} & =\frac{1}{(2 \pi)^{n}}\left\|F x(\cdot)-F T_{\rho} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& =\frac{1}{(2 \pi)^{n}} \int_{|\sigma| \geqslant \rho}|F x(\sigma)|^{2} d \sigma \\
& =\frac{1}{(2 \pi)^{n}} \int_{|\sigma| \geqslant \rho}\left(1+|\sigma|^{2}\right)^{-x}\left(1+|\sigma|^{2}\right)^{x}|F x(\sigma)|^{2} d \sigma \\
& \leqslant \frac{\left(1+\rho^{2}\right)^{\alpha}}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}\left|\left(1+|\sigma|^{2}\right)^{\alpha / 2} F x(\sigma)\right|^{2} d \sigma \\
& =\frac{\left(1+\rho^{2}\right)^{-\alpha}}{(2 \pi)^{n}}\left\|F I_{x} x(\cdot)\right\|_{\left.L_{2 \mid} \mid \mathbb{R}^{n}\right)}^{2} \\
& =\left(1+\rho^{2}\right)^{-\alpha}\left\|I_{x} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& =\left(1+\rho^{2}\right)^{-\alpha}\|x(\cdot)\|_{\Psi_{2}\left(\mathbb{R}^{n}\right)}^{2} \leqslant\left(1+\rho^{2}\right)^{-x} . \tag{3.11}
\end{align*}
$$

Evidently, $\operatorname{Im} T_{\rho} \subset \mathscr{G}_{\rho}\left(\mathbb{R}^{n}\right)$ for any $\rho>0$. Let $\left.\hat{\rho}=2 \sqrt{\pi}(\Gamma(n / 2)+1) v\right)^{1 / n}$. Then $V_{n}(\hat{\rho}) /(2 \pi)^{n}=v$. Hence, by $(3.10), \operatorname{dim}\left(\operatorname{Im} T_{\tilde{\rho}}, L_{2}\left(\mathbb{R}^{n}\right)\right) \leqslant v$. So it follows from this and (3.11) that

$$
\begin{aligned}
\bar{d}_{v}\left(B \mathscr{H}_{2}^{\alpha}\left(\mathbb{R}^{n}\right), L_{2}\left(\mathbb{R}^{n}\right)\right) & \leqslant d\left(B \mathscr{H}_{2}^{x}\left(\mathbb{R}^{n}\right), \operatorname{Im} T_{\dot{\rho}}, L_{2}\left(\mathbb{R}^{n}\right)\right) \\
& \leqslant \sup _{x \mid \cdot) \in B \mathscr{H}_{2}^{x}\left(\mathbb{R}^{n}\right)}\left\|x(\cdot)-T_{\dot{\rho}} x(\cdot)\right\|_{L_{2}\left(\mathbb{R}^{n}\right)} \\
& \leqslant\left(1+4 \pi\left(\Gamma\left(\frac{n}{2}+1\right) v\right)^{2 / n}\right)^{-\alpha / 2}
\end{aligned}
$$

The lower bound. Let $\rho>0$ be such that $V_{n}(\rho) /(2 \pi)^{n}>v$. It is obvious that there exist a positive integer $N$, sets $\xi_{s}+\Delta_{\sigma} \subset R^{n}, s=1, \ldots, N$, where $\xi_{s} \in \mathbb{R}^{n}, s=1, \ldots, N, \sigma>0$, and $\Delta_{\sigma}:=\left\{t=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}| | t_{i} \mid \leqslant \sigma\right.$, $i=1, \ldots, n\}$ so that $\operatorname{int}\left(\xi_{i}+\Delta_{\sigma}\right) \cap \operatorname{int}\left(\xi_{j}+\Delta_{\sigma}\right)=\varnothing, i \neq j, \bigcup_{s=1}^{N}\left(\xi_{s}+\Delta_{\sigma}\right) \subset$ $\rho B \mathbb{R}^{n}$ and $\operatorname{mes}\left(\bigcup_{s=1}^{N}\left(\xi_{s}+\Delta_{\sigma}\right)\right) /(2 \pi)^{n}=N(2 \sigma)^{n} /(2 \pi)^{n}>v$.

Choose $\mu_{1} \in(0, \sigma)$ such that $N\left(2\left(\sigma-\mu_{1}\right)\right)^{n} /(2 \pi)^{n}>v$ and let $0<\mu<$ $\mu_{1}<\sigma$ and $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$. Consider the function

$$
\begin{aligned}
& \varphi_{k, \sigma}\left(t_{1}, \ldots, t_{n}\right) \\
&:=\prod_{j=1}^{n} \frac{\sin (\sigma-\mu)\left(t_{j}-k_{j} \pi /(\sigma-\mu)\right) \sin \mu\left(t_{j}-k_{j} \pi /(\sigma-\mu)\right)}{\mu(\sigma-\mu)\left(t_{j}-k_{j} \pi /(\sigma-\mu)\right)^{2}} .
\end{aligned}
$$

It is easy to verify that $\varphi_{k, \sigma}(\cdot) \in \mathscr{B}_{\bar{\sigma}, 2}\left(\mathbb{R}^{n}\right)$, where $\bar{\sigma}=(\sigma, \ldots, \sigma)$. Then, by the Paley-Wiener theorem, $F \varphi_{k, \sigma}(t)=0$ a.e. on $\mathbb{R}^{n} \backslash A_{\sigma}$.

Let $a>0$. Set

$$
\begin{aligned}
& Q(a):=\operatorname{span}\left\{\varphi_{k, \sigma}(t) e^{i \xi_{s} t}| | k_{j} \mid\right. \\
& \\
& \left.\leqslant\left[a\left(\sigma-\mu_{1}\right) / \pi\right], j=1, \ldots, n, s=1, \ldots, N\right\} .
\end{aligned}
$$

If $x(\cdot) \in Q(a)$ we see that $F x(t)=0$ a.e. on $\mathbb{R}^{n} \backslash\left(\bigcup_{s=1}^{N}\left(\xi_{s}+\Delta_{\sigma}\right)\right)$. In particular, $Q(a) \subset \mathscr{G}_{\rho}\left(\mathbb{R}^{n}\right)$.

Next, there is an $a_{0}>0$ such that for each $a \geqslant a_{0}$ and any $x(\cdot) \in Q(a)$ the inequality

$$
\begin{equation*}
\|x(\cdot)\|_{L_{2}\left(\mathbb{R}^{n}\right)} \leqslant \eta(a)\|x(\cdot)\|_{L_{2}\left([-a, a]^{n}\right)} \tag{3.12}
\end{equation*}
$$

holds true, where $\eta(a)>0$ and $\eta(a) \rightarrow 1$ as $a \rightarrow \infty$.
For $n=1$, (3.12) was proved in [7]. The argument in the general case is similar.

We now show that

$$
\begin{equation*}
\bar{d}_{v}\left(\mathscr{G}_{\rho}\left(\mathbb{R}^{n}\right) \cap B L_{2}\left(\mathbb{R}^{n}\right), L_{2}\left(\mathbb{R}^{n}\right)\right) \geqslant 1 . \tag{3.13}
\end{equation*}
$$

Let $L \in \operatorname{Lin}_{\mathrm{c}}\left(L_{2}\left(\mathbb{R}^{n}\right)\right), \overline{\operatorname{dim}}\left(L, L_{2}\left(\mathbb{R}^{n}\right)\right) \leqslant v, a \geqslant a_{0}, S(a)$ be the restriction of $Q(a)$ to $[-a, a]^{n}$, and $x_{u}(\cdot) \in S(a) \cap(\eta(a))^{-1} B L_{2}\left([-a, a]^{n}\right)$. Because $x_{a}(\cdot)$ is an analytic function, there is a unique function $x(\cdot) \in Q(a)$ such that $\left.x(\cdot)\right|_{[-a, a]^{n}}=x_{a}(\cdot)$. Hence, by (3.12), $\|x(\cdot)\|_{L_{2}\left(\mathbb{R}^{n}\right)} \leqslant 1$, that is, $x(\cdot) \in \mathscr{G}_{\rho}\left(\mathbb{R}^{n}\right) \cap$ $B L_{2}\left(\mathbb{R}^{n}\right)$.

By an argument similar to the proof of Theorem 1.1, we have (see (3.3))

$$
\begin{align*}
& (1+\varepsilon) d\left(\mathscr{G}_{\rho}\left(\mathbb{R}^{n}\right) \cap B L_{2}\left(\mathbb{R}^{n}\right), L, L_{2}\left(\mathbb{R}^{n}\right)\right) \\
& \quad \geqslant d\left(x_{a}(\cdot), M(a, \varepsilon), L_{2}\left([-a, a]^{n}\right)\right)-\varepsilon \tag{3.14}
\end{align*}
$$

where $\varepsilon>0, M(a, \varepsilon)$ is a subspace of $L_{2}\left([-a, a]^{n}\right)$, and $\operatorname{dim} M(a, \varepsilon) \leqslant$ $K_{\epsilon}\left(a, L, L_{2}\left(\mathbb{R}^{n}\right)\right)$.

By taking the supremum over such $x_{a}(\cdot)$, we obtain

$$
\begin{align*}
& (1+\varepsilon) d\left(\mathscr{G}_{\rho}\left(\mathbb{R}^{n}\right) \cap B L_{2}\left(\mathbb{R}^{n}\right), L, L_{2}\left(\mathbb{R}^{n}\right)\right) \\
& \quad \geqslant(\eta(a))^{-1} d\left(S(a) \cap B L_{2}\left([-a, a]^{n}\right), M(a, \varepsilon), L_{2}\left([-a, a]^{n}\right)\right)-\varepsilon \tag{3.15}
\end{align*}
$$

It is clear that $\operatorname{dim} S(a)=\operatorname{dim} Q(a)=N\left(2\left[a\left(\sigma-\mu_{1}\right) / \pi\right]+1\right)^{n} . \quad$ By assumption $\lim _{a \rightarrow \infty}\left(\operatorname{dim} S(a) /(2 a)^{n}\right)=N\left(2\left(\sigma-\mu_{1}\right)\right)^{n} /(2 \pi)^{n}=: v_{1}>v$. Let $\delta>0$ satisfy $v_{1}-\delta>v+\delta$ and $\left\{a_{s}\right\}_{s \in \mathbb{N}}$ be a sequence for which

$$
\liminf _{a \rightarrow \infty} \frac{K_{c}\left(a, L, L_{2}\left(\mathbb{R}^{n}\right)\right)}{(2 a)^{n}}=\lim _{s \rightarrow \infty} \frac{K_{\varepsilon}\left(a_{s}, L, L_{2}\left(\mathbb{R}^{n}\right)\right)}{\left(2 a_{s}\right)^{n}}
$$

Then there exists an integer $S_{0}$ such that $K_{\varepsilon}\left(a_{s}, L, L_{2}\left(\mathbb{R}^{n}\right)\right) \leqslant(v+\delta)\left(2 a_{s}\right)^{n}$ and $\operatorname{dim} S\left(a_{s}\right) \geqslant\left(v_{1}-\delta\right)\left(2 a_{s}\right)^{n}$ for all $s \geqslant s_{0}$. That is,

$$
\operatorname{dim} M\left(a_{s}, \varepsilon\right) \leqslant K_{c}\left(a_{s}, L, L_{2}\left(\mathbb{R}^{n}\right)\right)<\operatorname{dim} S\left(a_{s}\right) .
$$

Hence, by Tikhomirov's theorem (let $X$ be a normed linear space, $L \in \operatorname{Lin}(X)$, and $\operatorname{dim} L=n+1$; then $\left.d_{n}(L \cap B X, X)=1\right)$, we have

$$
d\left(S\left(a_{s}\right) \cap B L_{2}\left(\left[-a_{s}, a_{s}\right]^{n}\right), M\left(a_{s}, \varepsilon\right], L_{2}\left(\left[-a_{s}, a_{s}\right]^{\prime \prime}\right)\right) \geqslant 1
$$

for all $s \geqslant s_{0}$.
From this and (3.15) and since $\eta(a) \rightarrow 1$ as $a \rightarrow \infty$, we obtain (3.13).
Next, the Bernstein-type inequality

$$
\begin{equation*}
\|x(\cdot)\|_{{\underset{2}{2}}_{2}^{\left(\mathbb{R}^{n}\right)}} \leqslant\left(1+\rho^{2}\right)^{\alpha / 2}\|x(\cdot)\|_{L_{2}\left(\mathbb{F}^{n}\right)} \tag{3.16}
\end{equation*}
$$

holds true for all $x(\cdot) \in \mathscr{G}_{\rho}\left(\mathbb{R}^{n}\right)$.
Indeed, if $x(\cdot) \in \mathscr{G}_{\mu}\left(\mathbb{R}^{n}\right)$, then, by Plancherel's theorem,

$$
\begin{aligned}
\|x(\cdot)\|_{\mathscr{H}_{2}^{x}\left(\mathbb{R}^{n}\right)}^{2} & =\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}\left(\left(1+|\lambda|^{2}\right)^{x / 2}|F x(\lambda)|\right)^{2} d \lambda \\
& =\frac{1}{(2 \pi)^{n}} \int_{|\lambda| \leqslant \rho}\left(1+|\lambda|^{2}\right)^{x}|F x(\lambda)|^{2} d \lambda \\
& \leqslant \frac{1}{(2 \pi)^{n}}\left(1+\rho^{2}\right)^{\alpha} \int_{R^{n}}|F x(\lambda)|^{2} d \lambda \\
& =\left(1+\rho^{2}\right)^{x}\|x(\cdot)\|_{L_{2}\left(\mathbb{R}^{n}\right)}^{2} .
\end{aligned}
$$

Inequality (3.16) means that $\mathscr{G}_{4}\left(\mathbb{R}^{n}\right) \cap\left(1+\rho^{2}\right)^{x / 2} B L_{2}\left(\mathbb{R}^{n}\right) \subset B \mathscr{H}_{2}^{x}\left(\mathbb{R}^{n}\right)$.
It follows from this and (3.13) that

$$
\begin{aligned}
\bar{d}_{v}\left(B \mathscr{H}_{2}^{x}\left(\mathbb{R}^{n}\right), L_{2}\left(\mathbb{R}^{n}\right)\right) & \geqslant\left(1+\rho^{2}\right)^{-x / 2} \bar{d}_{v}\left(\mathscr{G}_{\rho}\left(\mathbb{R}^{n}\right) \cap B L_{2}\left(\mathbb{R}^{n}\right), L_{2}\left(\mathbb{R}^{n}\right)\right) \\
& \geqslant\left(1+\rho^{2}\right)^{-x / 2} .
\end{aligned}
$$

Since this is true of every $\rho>0$ such that $V_{n}(\rho) /(2 \pi)^{n}>v$ we deduce that

$$
\begin{aligned}
\bar{d}_{v}\left(B \mathscr{H}_{2}^{\alpha}\left(\mathbb{R}^{n}\right), L_{2}\left(\mathbb{R}^{n}\right)\right) & \geqslant\left(1+\hat{\rho}^{2}\right)^{-\alpha / 2} \\
& =\left(1+4 \pi\left(\Gamma\left(\frac{n}{2}+1\right) v\right)^{2 / n}\right)^{\alpha / 2}
\end{aligned}
$$

Theorem 1.2 is proved.

## References

1. A. Benedec and R. Panzone, The spaces $L^{p}$ with mixed norm, Duke Math. J. 28, No. 3 (1961), 301-324.
2. Din Dung, Average $\varepsilon$-dimension of functional class $B_{G . p}$, Mat. Zametki 28, No. 5 (1980), 727-736.
3. P. I. Lizorkin, Fourier multipliers and the estimations of convolutions in spaces with mixed norm. Applications, Izv. Acad. Nauk SSSR Ser. Mat. 34, No. 1 (1970), 218-247.
4. G. G. Magaril-Il'yaev, Bernstein-Nikolskii type inequalities and approximation of generalized Sobolev classes, Trudy Mat. Inst. Acad. Nauk SSSR 173 (1986), 190-204.
5. G. G. Magaril-Il'yaev, $\varphi$-Average widths of classes of functions defined on the real line, Uspekhi Mat. Nauk 45, No. 2 (1990), 211-212.
6. G. G. Magaril-Il'yaey, Average dimension and widths of classes of functions defined on the real line, Dokl. Acad. Nauk SSSR 318, No. 1 (1991), 35-38.
7. G. G. Magaril-Il'yaev, Average dimension, widths and optimal recovery of Sobolev classes on the whole line, Mat. Sb. 182, No. 11 (1991), 1635-1656.
8. S. M. Nikolskin, "Approximation of Functions of Several Variables and Embedding Theorems," "Nauka," Moscow, 1977.
9. E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Univ. Press, Princeton, NJ, 1970.
10. V. M. Tiкhomirov, On approximative characteristics of smooth functions of several variables, in "Trudy Conference on Differential Equations and Computational Mathematics, Novosibirsk, 1978." "Nauka" SO, Novosibirsk, 1980.
11. V. M. Tikhomirov, "Approximation Theory," Itogi nauki i tekhn., Vol. 14, "Nauka," Moscow, 1987.
12. G. H. Hardy, J. E. Littlewood, and G. Pólya "Inequalities," Cambridge Univ. Press, Cambridge, 1934.
